Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 4, 2026
- 
            Poly(3,4-ethylene dioxythiophene) (PEDOT) has a high theoretical charge storage capacity, making it of interest for electrochemical applications including energy storage and water desalination. Nanoscale thin films of PEDOT are particularly attractive for these applications to enable faster charging. Recent work has demonstrated that nanoscale thin films of PEDOT can be formed using sequential gas-phase exposures via oxidative molecular layer deposition, or oMLD, which provides advantages in conformality and uniformity on high aspect ratio substrates over other deposition techniques. But to date, the electrochemical properties of these oMLD PEDOT thin films have not been well-characterized. In this work, we examine the electrochemical properties of 5–100 nm thick PEDOT films formed using 20–175 oMLD deposition cycles. We find that film thickness of oMLD PEDOT films affects the orientation of ordered domains leading to a substantial change in charge storage capacity. Interestingly, we observe a minimum in charge storage capacity for an oMLD PEDOT film thickness of ∼30 nm (60 oMLD cycles at 150 °C), coinciding with the highest degree of face-on oriented PEDOT domains as measured using grazing incidence wide angle X-ray scattering (GIWAXS). Thinner and thicker oMLD PEDOT films exhibit higher fractions of oblique (off-angle) orientations and corresponding increases in charge capacity of up to 120 mA h g −1 . Electrochemical measurements suggest that higher charge capacity in films with mixed domain orientation arise from the facile transport of ions from the liquid electrolyte into the PEDOT layer. Greater exposure of the electrolyte to PEDOT domain edges is posited to facilitate faster ion transport in these mixed domain films. These insights will inform future design of PEDOT coated high-aspect ratio structures for electrochemical energy storage and water treatment.more » « less
- 
            Area‐selective atomic layer deposition (AS‐ALD) techniques are an emerging class of bottom‐up nanofabrication techniques that selectively deposit patterned ALD films without the need for conventional top‐down lithography. To achieve this patterning, most reported AS‐ALD techniques use a chemical inhibitor layer to proactively block ALD surface reactions in selected areas. Herein, an AS‐ALD process is demonstrated that uses a focused electron beam (e‐beam) to dissociate ambient water vapor and “write” highly resolved hydroxylated patterns on the surface of highly oriented pyrolytic graphite (HOPG). The patterned hydroxylated regions then support subsequent ALD deposition. The e‐beam functionalization technique facilitates precise pattern placement through control of beam position, dwell time, and current. Spatial resolution of the technique exceeded 42 nm, with a surface selectivity of between 69.9% and 99.7%, depending on selection of background nucleation regions. This work provides a fabrication route for AS‐ALD on graphitic substrates suitable for fabrication of graphene‐based nanoelectronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
